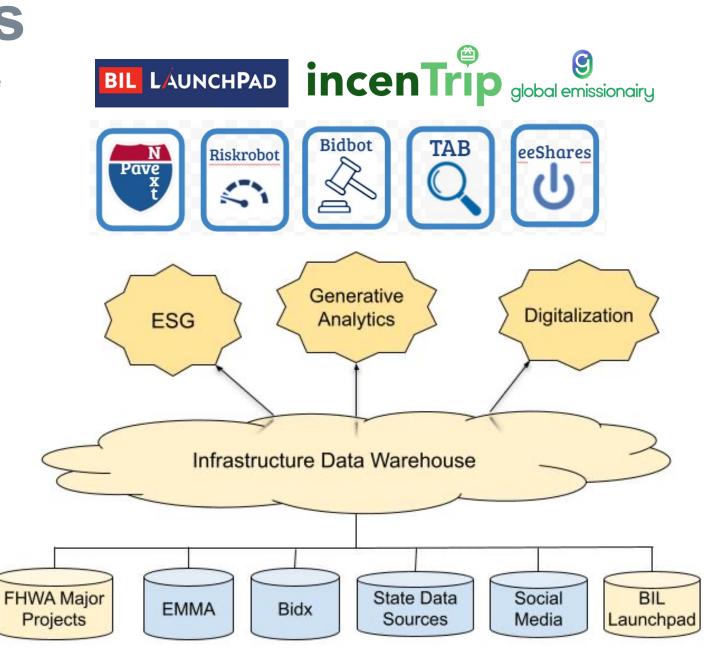


The Power of Data: Transforming Decision-**Making in Transportation Projects**


Qingbin (QC) Cui

Our Research Platforms

The Build America Center (BAC) will mobilize the use of innovative financing, funding, and project delivery solutions to foster new approaches to transportation infrastructure development and delivery through creation of a knowledge hub, spurring innovation with cutting edge research, collaborative partnerships and the development of an academy to deliver innovative education and training plus tailored technical assistance.

Data Driven Project Management: Examples

100%

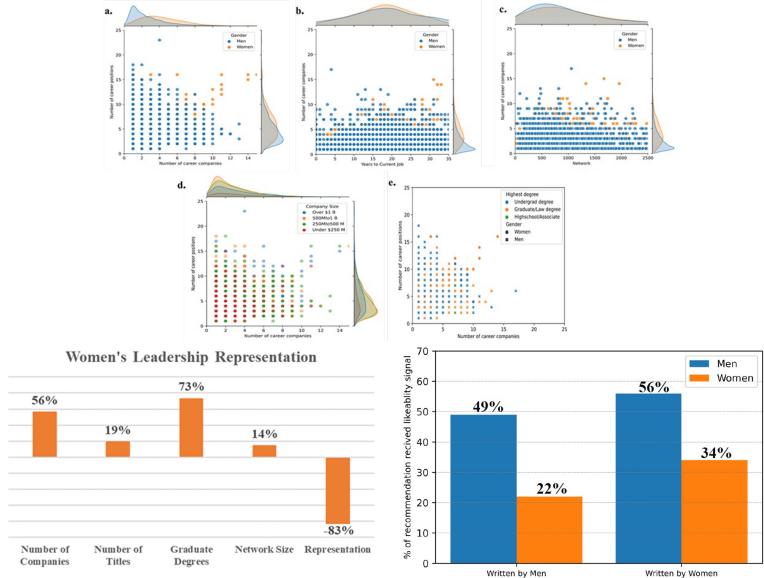
80%

60%

40%

20%

-20%

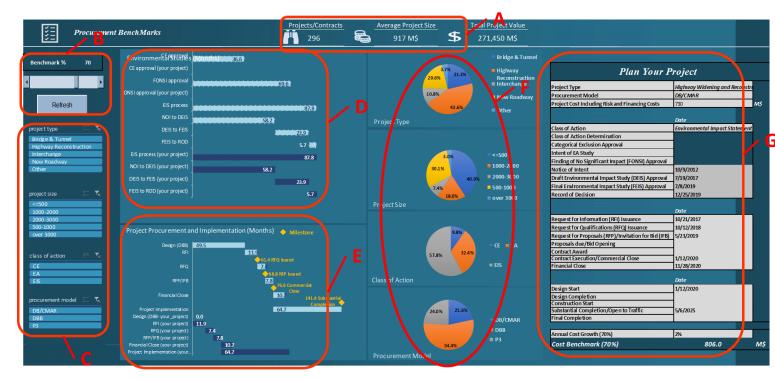

-40%

-60% -80%

-100%

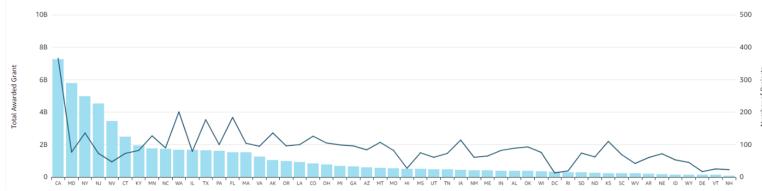
Gender Equality 0%

- Data Centric Risk Management
- Benchmarking and Planning
- Price Manipulation Detection
- Public Perception and Engagement
- Bidding Intelligence
- Data Driven Career Paths and Workforce Development
- Life-Cycle Emission Analysis
- And many other applications



FEARLESS INNOVATION

Likeablity Score


whitten by wome

Dashboard and Benchmarking

Total Awarded Grants	Total Awarded Projects	Total Awarded Organizations	Total Awarded Local and Tribal Governments
\$59.68B	4,542	2,995	1,058

Grant and Project by State

BUILD AMERICA CENTER INNOVATIVE FINANCING AND DELIVERY **OF TRANSPORTATION INFRASTRUCTURE**

新 初 記 Number of projects Total project value Division 86 M \$ Schedule Type 3= 2012 2013 2014 Number of bidders chodule ¥= -Top Contractors winne ¥= 🔨 Division First-digit test Eastern Federal Lands estern Federal Lands 30.00 25.00 20.00 10.00 Schedule Type 5.00 0.00 2 Actual Bid Percentage Balanced Bid

Combating Unethical Practice

NEWS V COLUMNS V ANTITRUST CHRONICLE V CPI MEDIA V

US: AG now takes the lead in state's asphalt antitrust lawsuit

CPI - January 11, 2017

f 🕑 in 🖾 🖨

The state Attorney General's Office is now taking the lead in an antitrust lawsuit claiming the price of asphalt in West Virginia markets has been inflated through noncompetitive practices.

In October, the private firm Bailey & Glasser filed lawsuits on behalf of Charleston, Parkersburg, Beckley and Bluefield. A couple of days later, the state Department of Transportation jumped on board the lawsuit.

The matter arose a few times during Patrick Morrisey's re-election campaign for Attorney General. A legislative committee overseeing the state Department of Transportation has aggressively asked leaders in the Department of Transportation how and why the lawsuit was filed without the Attorney General. And lawyers for the asphalt companies filed a motion to dismiss, saying the only way the state could legally file a claim is through the Attorney General.

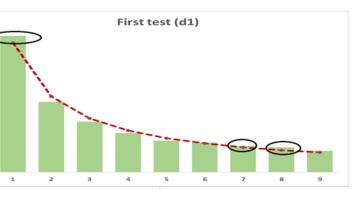
Throughout, Morrisey and his office had said there was nothing that could be said publicly while the matter was under investigation.

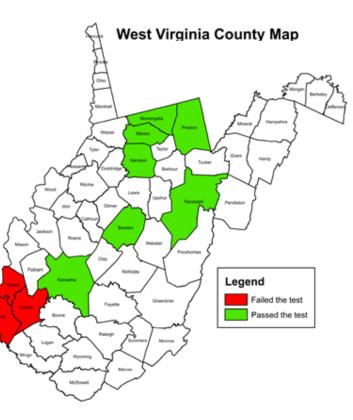
WV annual TAB model results.

year	Number of records	Test 1 (d1)	Test 2 (d2)	Test 3 (d1d2)	Framework result
2011	1403	1.56	0.87	1.84*	Retain
2012	2030	1.74*	1.58	2.21**	Reject
2013	1543	1.90*	0.90	2.38**	Reject
2014	1874	2.04**	1.30	2.56**	Reject
2015	1661	1.66	1.41	2.09**	Reject
2016	1717	1.62	1.49	2.36**	Reject
2017	2106	2.61**	1.51	2.89**	Reject
2018	2057	1.99*	2.11**	2.43**	Reject
2019	2169	2.21**	1.41	2.63**	Reject
2020	2039	1.21	1.46	2.09**	Reject

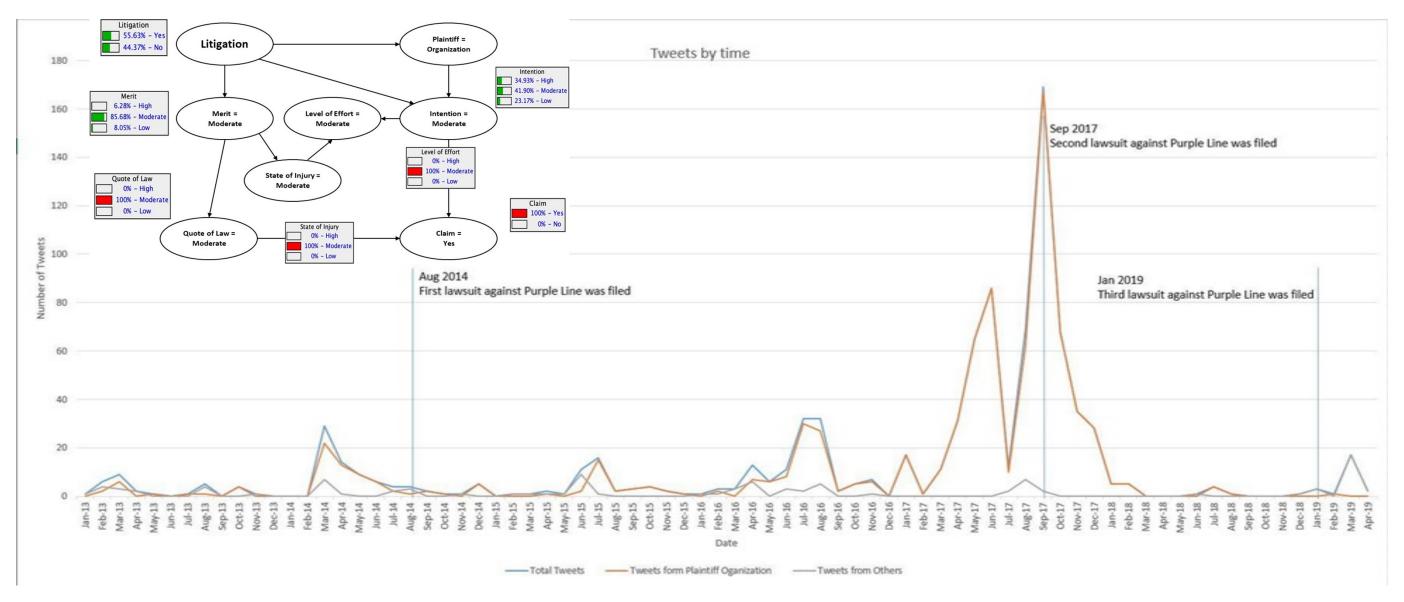
WV company TAB model results.

Company	Number	Test 1 (d1)	Test 2 (d2)	Test 3	Framework
	of records			(d1d2)	result
West Virginia Paving, Inc.	2556	3.19**	1.03	3.39**	Reject
J. F. Allen company	1325	1.25	0.53	1.56	Retain
Mountaineer Contractors, Inc.	1049	0.49	0.73	1.21	Retain

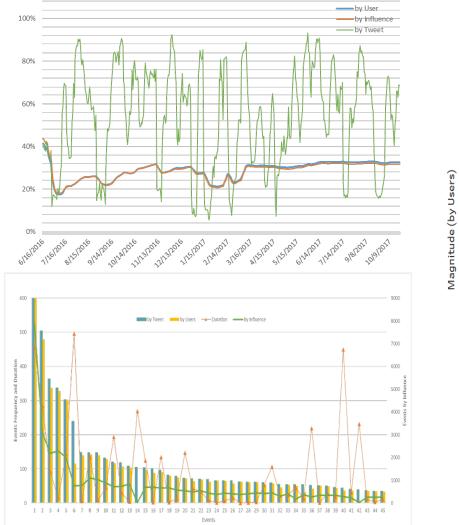

Note: ** and * denote a significant difference from Benford's law distribution at 1% and 5% levels of significance, respectively. Critical values of Kuiper test are 2.001 and 1.747 regardless of sample size, respectively (Louter 1970).


Company	INUILIDEE	1est 1 (01)	1 est 2 (u2)	rest 5	гташежотк
	of records			(d1d2)	result
Marshal Asphalt Wear CRSE,	1810	2.83**	1.46	3.09**	Reject
SG, TY I					-
Marshal Asphalt Base CRSE,	1630	5.02**	1.47	5.42**	Reject
SG, TY I					
Marshal Asphalt Base CRSE,	1756	1.94*	0.81	2.88**	Reject
SG, TY II					5

Note: ** and * denote a significant difference from Benford's law distribution at 1% and 5% levels of significance, respectively. Critical values of Kuiper test are 2.001 and 1.747 regardless of sample size, respectively (Louter 1970).


https://github.com/benfordlaw/Irregular-Bidding-detection

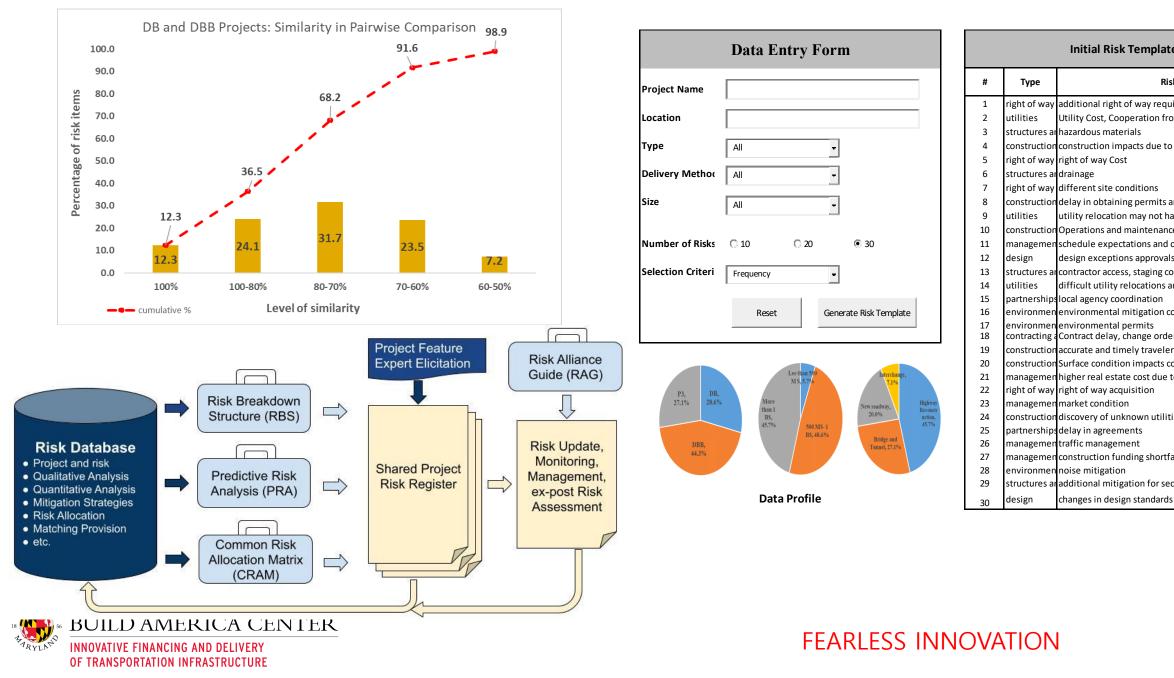
Project Litigation Intelligence




FEARLESS INNOVATION

6

Understanding Public Perception


- Public Acceptance is driven by social media events
- Event Influence
 - Breaking
 - Impacting
 - Lasting
 - Marginal
- User Analysis
 - Opinion Leaders
 - Opinion Followers

Data Centric Risk Assessment

te	Number o	of projects	70
sk	Prevalence	Probability	Cost (M\$)
uired	100.00	0.41	4.55
om utility owners for both r	91.43	0.49	13.69
	87.14	0.39	3.43
o lack of right of way and tin	78.57	0.41	0.87
	60.00	0.43	1.08
	60.00	0.37	5.32
	57.14	0.51	4.55
and approvals	51.43	0.69	0.06
appen in time	50.00	0.43	6.01
ce during construction	48.57	0.29	8.34
constraints	42.86	0.58	12.70
ls	41.43	0.55	17.81
oordination and constructat	40.00	0.75	0.63
and conflicts	40.00	0.78	-0.30
	38.57	0.67	15.05
costs	35.71	0.61	0.89
	35.71	0.53	0.11
ers	35.71	0.41	4.45
er information during/after o			
construction cost and schedu	34.29	0.34	2.69
to development, annexatio	34.29	0.13	0.60
	31.43	0.10	3.63
	31.43	0.30	10.88
ties during construction	30.00	0.47	0.51
	30.00	0.51	0.25
fall	28.57	0.44	0.31
an	28.57	0.29	16.08
ection 4(f) impacts	28.57 27.14	0.42 0.30	26.25 13.50
., .			
s and requirements	27.14	0.31	0.21

Risk Register: An Example

General Risk

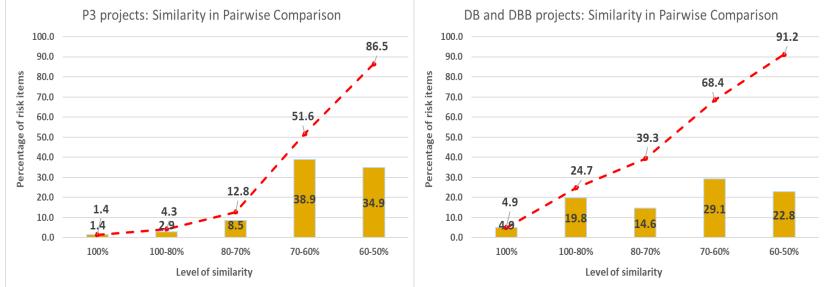
- Market and Inflation
- Labor Shortage
- Task-oriented
 - Delay in NEPA Approval
 - Financing
- Linked to WBS
 - Construction
 - Design
 - Environmental
 - Utilities
 - Structure and Geotech

APPENDIX B: RISK REGISTER

FD	FDOT District 5 Wekiva Parkway 2014 Risk Assessment Update Risk Register								Initial Risk Quantification Cost Risk Information (Millions Schedule Risk Information					
Ri	sk Info	ormati	on				,		Cost Risk	Information \$)	(Millions	Schedu	ule Risk Infor (Months)	mation
Record #	Risk ID	Status	Functional Assignment	Risk Name	Risk Description	Modeling Notes	Cost Threat/ Opportunity Schedule Threat/ Opportunity	Prob. (%)	Low Cost	Most Likely Cost	High Cost	Low Schedule	Most Likely Schedule	High Schedule
	MGT 40.03-2A2B2C	Dormant	Management / Funding	Schedule delay from not obtaining TIFIA	For 2A-C, pursuing TIFIA for the sections with combined 1A1B-base schedule assumes TIFIA and without it there may be delay to construction start of 18 months for Segments 2. Schedule for 1A1B will not change. Base scenario will assume TIFIA Funding. Can run separate non-TIFIA schedule scenario if required.	Correlate with risk on material availability for 2	Threat	50%				18	18	18
2	CTR 40.01-1A	Active	Contracting and Procurement	Market conditions – 1A	This is related to shortage of skilled labor, materials, equipment due to demand from other projects in the area. I-4 will have started and other Wekiva sections. Structural steel, Buy-American and reimbursable utilities (with Duke Transmission for some segments); escalation on materials for conditions six months from now. Quantification is 5 percent of 40 percent of construction cost to account for premium on materials with 50 percent probability.	Construction	Threat	50%	\$0.825	\$1.100	\$1.375			
ŝ	CTR 40.01-1B	Active	Contracting and Procurement	Market conditions – 1B	This is related to shortage of skilled labor, materials, equipment due to demand from other projects in the area. I-4 will have started and other Wekiva sections. Structural steel, Buy-American and reimbursable utilities (with Duke Transmission for some segments); escalation on materials for conditions six months from now. Quantification is 5 percent of 40 percent of construction cost to account for premium on materials with 50 percent probability.	Construction	Threat	50%	\$0.825	\$1.100	\$1.375			

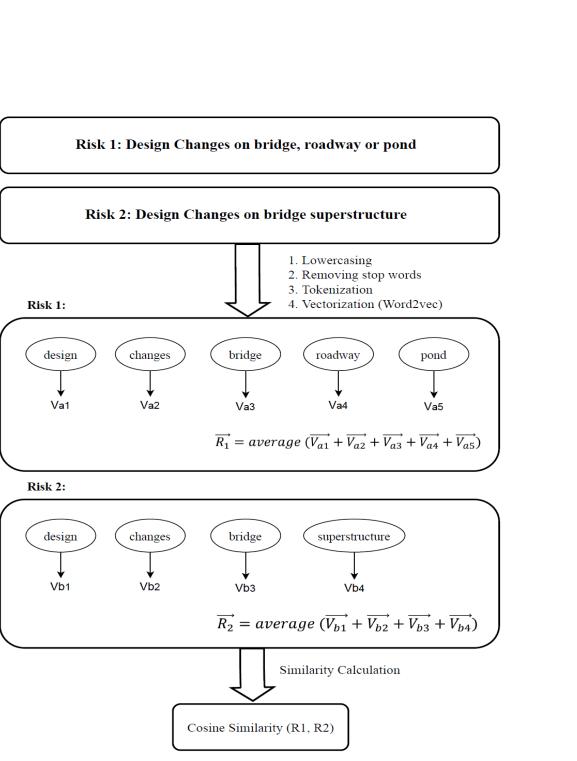
Data Changes Project Risk Management

Transforming Status Quo	Issue	Challenge	Solution	Method
How trustworthy are experts in Risk Assessment?	Incompatibility	Knowledge sharing across agencies	Risk Breakdown Structure	Natural Language Processing
 Are risks unique? How did experts perform? What is the Value of Using 	Interdependency	Under/overestimate risk consequence	Predictive and Generative Modeling	Big Data Analysis
Historical Data to Predict Project Risks?	Performance	Lessen learned & best practice	Ex-post Analysis	Risk Lifecycle Modeling
	Transparency	Stakeholder collaboration	Risk Database	Collective Intelligence



Risk Uniqueness

- **Research Design**
 - Similarity at **Document** level
 - Similarity at Risk Item level
 - Similarity at Risk Evaluation level
- Data: Risk Registers
 - **70 Major Transportation Projects**
 - 6000+ Risk Items
 - Structural/Unstructured Data Format
- **Research Methodology: Natural** Language Processing
 - **TF-IDF**
 - Word2vec


- 82 % of words and phrases are similar in risk registers
- Pairwise comparison of risk registers shows **53%** of risks are similar

Source: Erfani, A., Cui, Q., & Cavanaugh, I. (2021). An Empirical Analysis of Risk Similarity among Major Transportation Projects Using Natural Language Processing. Journal of Construction Engineering and Management, 147(12)

Risk Item Similarity

Risk (1)	Similarity	Risk (2)
Owner directed changes and design	1	Owner directed changes and
views		design views
Determination of secondary impacts	0.95	Determination of wetlands impacts
to wetlands		
Utility Relocations	0.85	Utility Relocations and conflicts
Federal agencies may take longer	0.81	Permits or agency actions delayed
than expected to review and issue a		or take longer than expected
permit		
Handling of Contaminated Materials	0.78	Unanticipated Hazardous
		Materials or Contaminated Soils
Unforeseen Utilities	0.72	Unknown Utilities
Right of way Acquisition Cost	0.64	Right of Way Acquisition is costlier
		than expected
Construction Change Orders &	0.62	Change orders
Incentives		
Concrete delivery	0.59	Materials delivery constraints
Disposal of Regulated Material	0.56	Unidentified Hazardous materials
		Found in Construction

Semantic similarity using NLP

Risk Evaluation Uniqueness

- Similarity at Risk Evaluation level
- Comparing the assessment of similar risks with different terminologies show a large similarity across their assessment in (1-5) Likert scale

Similarity = 1 – Distance index =
$$\left[1 - \left(\frac{|x_1 - x_2|}{4}\right)\right] * 100$$

A Good Database might cover more than 70% of risks in a risk register

- Risk consequences and probabilities were evaluated in similar patterns
- Cost impact shows very common evaluation

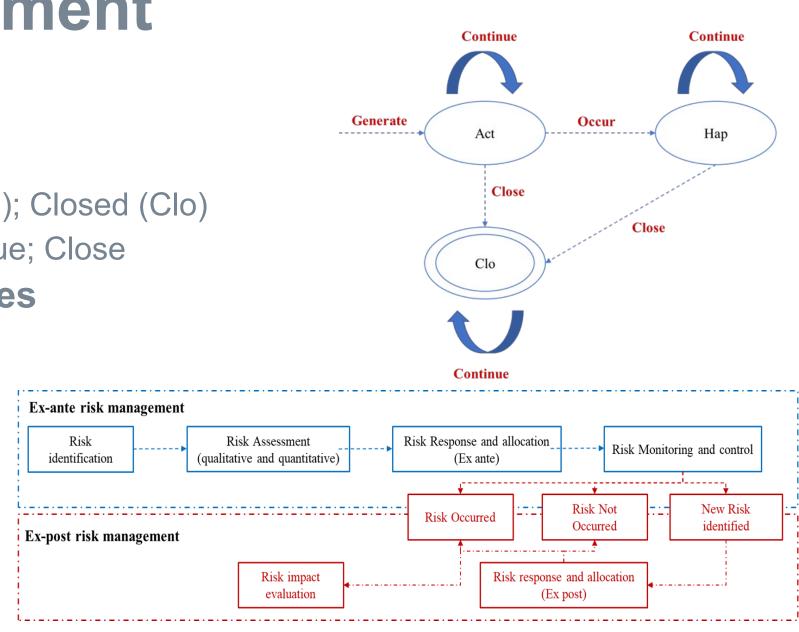
Cosine similarity	Probability	Cost	Schedule	Probability + Cost	Probability +Schedule
level					
Group A: DBB/DB	Projects				
At least 0.5	58.9%	96.6%	60.6%	72%	41%
At least 0.7	68.2%	100%	75%	83%	50%
At least 0.8	73.7%	100%	85.7%	70%	57%
Group B: P3 Projec	ts				
At least 0.5	62.0%	72.0%	66.5%	71%	55%
At least 0.7	63.7%	93.1%	73.9%	81%	57%
At least 0.8	60.3%	96.7%	65.6%	71%	51%

Source: Erfani, A., Cui, Q., & Cavanaugh, I. (2021). An Empirical Analysis of Risk Similarity among Major Transportation Projects Using Natural Language Processing. Journal of Construction Engineering and Management, 147(12)

ILD AMERICA CENTER TRANSPORTATION INFRASTRUCTURE

Ex-Post Risk Assessment

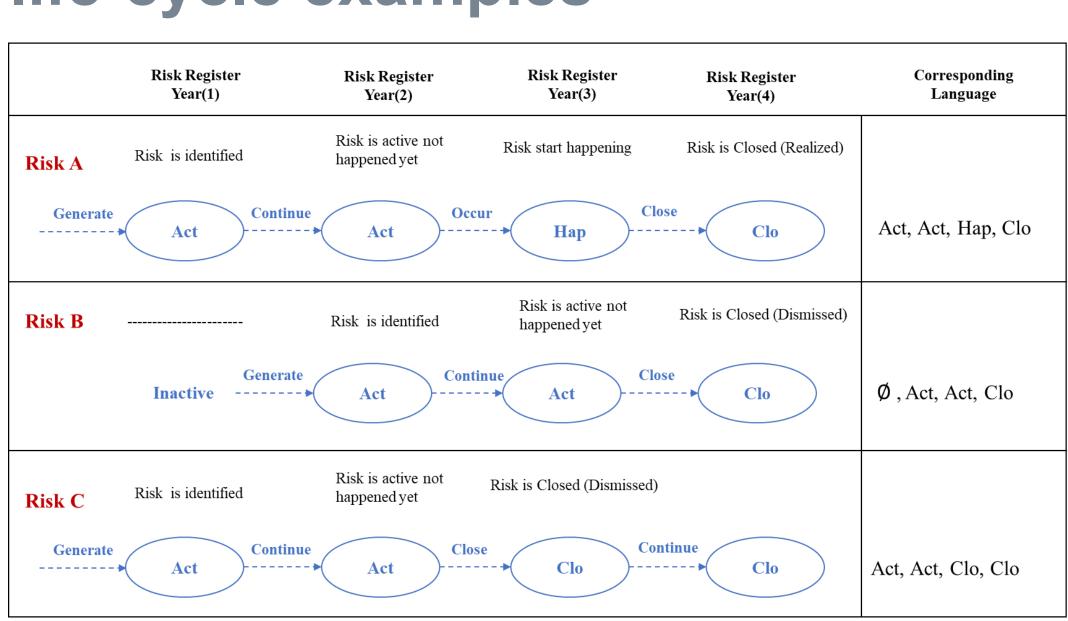
Research Design


- Risk Life Cycle Automata
- Risk State: Active (Act); Happening (Hap); Closed (Clo)
- Risk Transition: Generate; Occur; Continue; Close

Data: Registers and Annual Updates

- 11 Major Transportation Projects
- Total \$15.6 Billion (\$583M \$4922M)

Risk Methodology


- Performance Indicator Definition
- Performance Analysis

Source: Erfani, A., Ma, Z., Cui, Q., & Baecher, G. (2023). Ex post Project Risk Assessment: Theory, Method, and Empirical Study. Journal of Construction Engineering and Management, 149(2).

Risk life-cycle examples

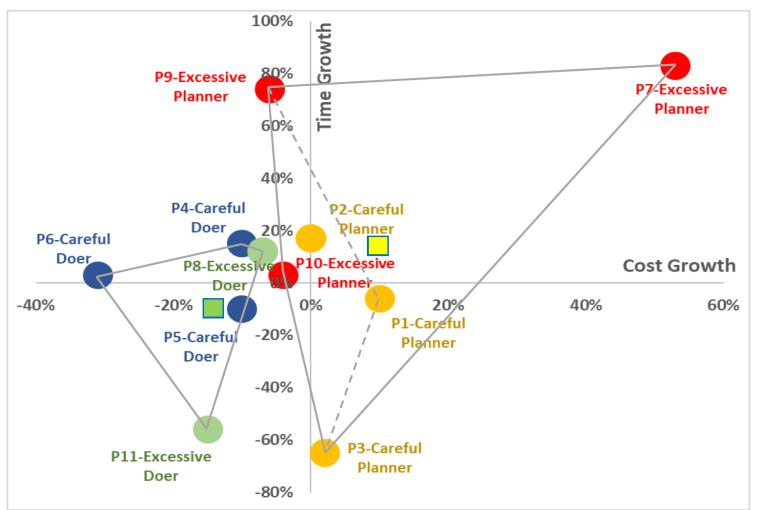
Ex-Post Risk Assessment

													1.0	
Efficiency Ratio -	0.62	0.84	0.49	0.82	0.36	0.47	0.07	0.8	0.45	1	1	0.57	1.0	Overall performance metrics
													- 0.8	Total realization ratio = $\frac{\text{Number}}{\text{Number}}$
Further realized ratio -	0.55	1	1	1	0.66	0.61	0.97	0.38	0.37	0	0	0.07	- 0.6	Total dismissed ratio = $\frac{\text{Number}}{\text{Number}}$
													0.0	
Initial realization ratio -	0.51	0.6	0.18	0.85	0.91	0.79	0.18	0.55	0.91	0.2	0.2	0.29	- 0.4	Initial realization ratio = $\frac{\text{Number of real}}{\text{Number of iden}}$
New item ratio	- 0.42	0.16	0.48	0.16	0.71	0.6	0.66	0.27	0.67	0.06	0.12	0.75		Initial efficiency ratio = $\frac{\text{Number of realiz}}{\text{Number of realiz}}$
													- 0.2	Number of re
Total realization ratio -	0.57	0.97	0.93	0.87	0.73	0.68	0.65	0.51	0.44	0.19	0.18	0.13	- 0.2	New item ratio = $\frac{\text{Number of identified}}{\text{Total Number of}}$
	/erage -	P-1 -	P-2 -	P-3 -	P-4 -	P-5 -	P-6 -	P-7 -	P-8 -	- 6-д	Pr-10 -	Pr-11 -	- 0.0	Further realized ratio = $\frac{\text{Number of realized}}{\text{Number of iden}}$
	A					Pro	ject							

- <u>57%</u> of identified risks are realized (ranging from 0.13 to 0.97)
- <u>62%</u> of identified risks at the first step are finally realized
- <u>55%</u> of those added risks are happened finally

FEARLESS INNOVATION

ics


ber of **realized** risks per of **identified** risks er of **dismissed** risks per of **identified** risks

realized risks in year 1 dentified risks in year 1

l**ized** risks in year 1 f **realized** risks

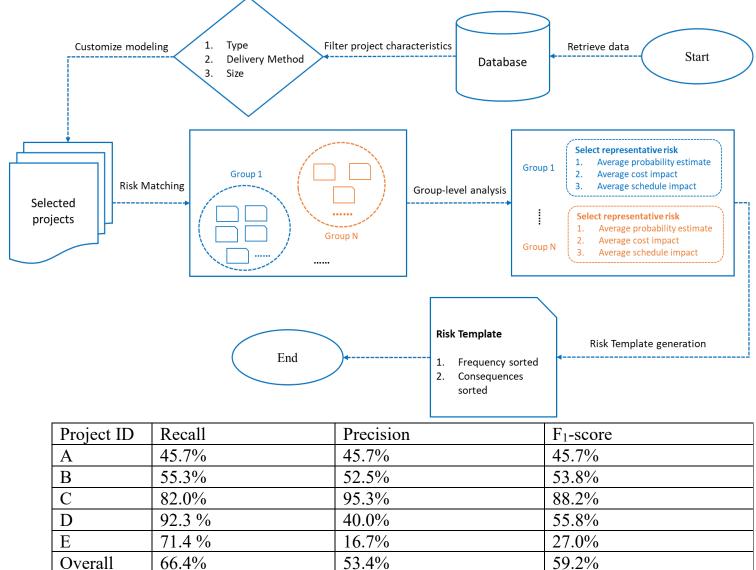
ified risks after year 1 of identified risks ed risks from risks after year 1 entified risks after year 1

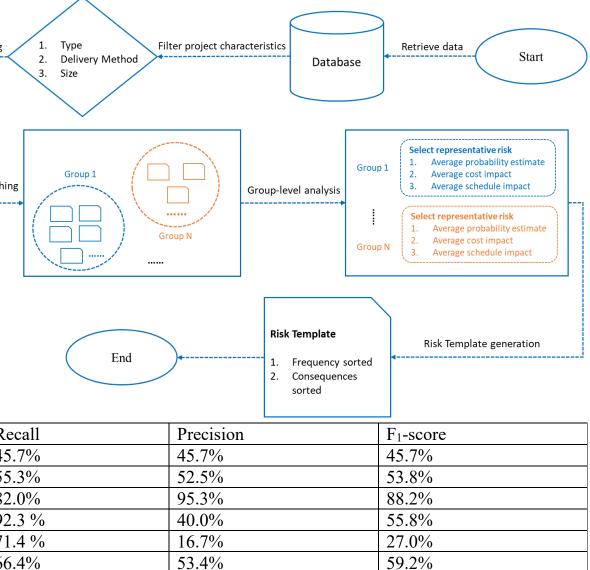
Risk Management Style

Careful Planner identifies most risks at the initial phase and most of these identified risks ultimately occur with consequences; Excessive Planner identifies the majority of risks at the initial phase but most of these identified risks are ultimately closed without occurrence;

<u>Careful Doer</u> actively updates risks during project implementation and most of these identified risks ultimately occur with consequences;

Excessive Doer actively updates risks during project implementation and most identified risks are closed without occurrence.

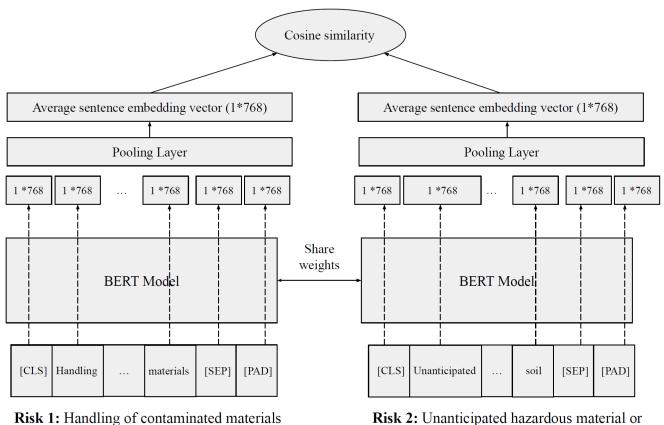

Source: Erfani, A., Ma, Z., Cui, Q., & Baecher, G. (2023). Ex post Project Risk Assessment: Theory, Method, and Empirical Study. Journal of Construction Engineering and Management, 149(2)



Value of Risk Data

Predictive Risk Modeling

- Step 1: Customize modeling: User define project characteristics
- Step 2: Risk matching : Group similar risks with different languages
- Step 3: Group-level analysis: Finalize the grouped risks as one risk item
- Step 4: Risk register generation: Sort the risks based on frequency or consequences
- 66% of risk items in five random testing projects are covered in predictive risk model



Project ID	Recall	Precision
А	45.7%	45.7%
В	55.3%	52.5%
С	82.0%	95.3%
D	92.3 %	40.0%
Е	71.4 %	16.7%
Overall	66.4%	53.4%

Source: Erfani, A., & Cui, Q. (2022). Predictive risk modeling for major transportation projects using historical data. Automation in Construction, 139, 104301

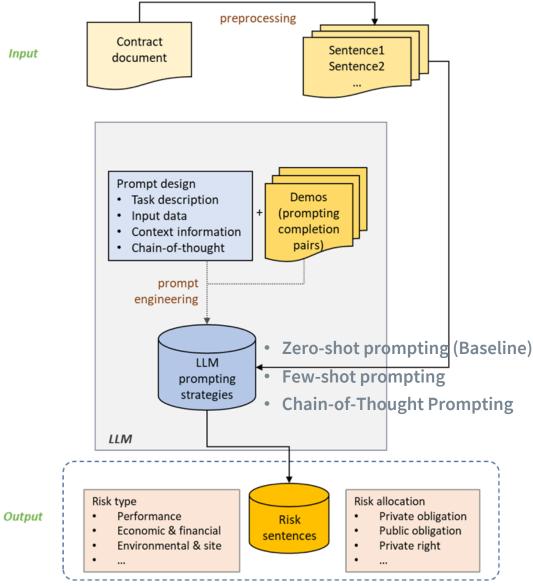
Value of Risk Data

contaminated soil

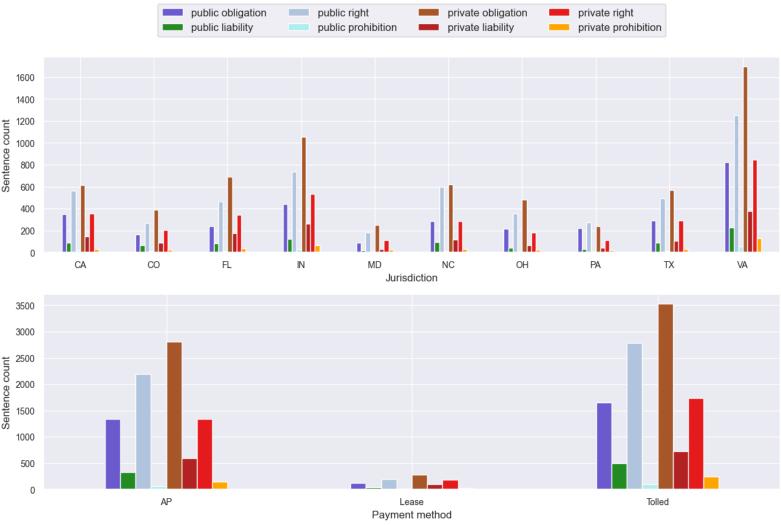
Table IV. Risk co-occurrence out of 70 risk registers

Risk (1)	Risk (2)	Rate
Right of way plan	Utility relocation	40
Delay in procurement	Utility relocation	36
Contractor Access	Utility relocation	36
Right of way plan	Delay in procurement	34
Design changes	Utility relocation	33
Contractor Access	Right of way plan	33
Contractor Access	Different site and subsurface	32
	condition	
Contractor Access	Delay in procurement	32
Hazardous Materials	Utility relocation	32
Right of way acquisition issues	Utility relocation	31
Design changes	Right of way plan	31
Contractor Access	Hazardous Materials	30
Contractor Access	Design changes	30
Contractor Access	Construction Excavation	30
Hazardous Materials	Right of way plan	30

Unified Risk Breakdown Structure

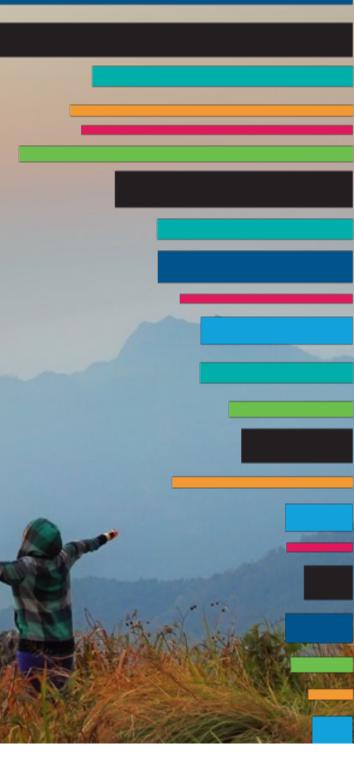

Co-occurrence based Risk Interdependency

Erfani, A., Cui, Q*, Baecher, G, and Kwak, Y (2023). Data-driven approach to risk identification: A common risk breakdown structure. IEEE Transactions on Engineering Management. In print


LLM for Contract Risk Management

INNOVATIVE FINANCING AND DELIVERY **OF TRANSPORTATION INFRASTRUCTURE**

BUILD AMERICA CENTER


Distribution of risk allocation sentences •

BUILD UPON SUCCESSFUL PARTNERSHIP

Qingbin Cui, Ph.D. cui@umd.edu https://bac.umd.edu/

